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PREFACE

This module was written for upper division and graduate students

in the environmental sciences who are interested in the properties of

fluids. Although partial differential equations are used, the approach

is basically intuitive. The problems require only algebra and focus on

descriptio%s of fluid flow and uses of conservation of mass.
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FLUID DYNAMICS APPLIED TO STREAMS

INTRODUCTION

In an earlier module of this series, some basic concepts of fluid

statics were developed. It was noted that many of these concepts have

an unusually strong bearing on the distribution and characteristics of

aquatic organisms. A much more common circumstance, however, is one for

which the fluid is in a constant state of motion. The large-scale

motion of air through vegetation and the flow of rivers are notable

examples. Perhaps of even greater importance is small-scale fluid

motion such as whirlpools or eddies commonly observed in flowing streams.

For example, extremely turbulent flow (see the section "Laminar and

Turbulent Flow") precludes the development of larger filamentous algae

and organisms with feathery appendages. Small eddies may lead to deposi-

tion of organic material and the development of communities based on

this food source. Description of the flow is also important for determin-

ing the forces (due to the flow of the water) acting on organisms in the

water and how these may effect their characteristics and distribution.

Finally, the description of transport of dissolved and undissolved

materials is dependent on description of the associated flow.

The study of fluids under all conditions of motion is known as

fluid dynamics. (Fluid statics and fluid dynamics together constitute

the discipline known as fluid mechanics.) The scope of fluid dynamics

is tremendous, and, in general, describing a particular flow situation

"under all conditions of motion" is either not possible or impractical.

(Certainly it is beyond the scope of an introductory treatment.) In an

attempt to understand why this is so, consider some common flow phenomena:
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the plume from a smokestack, the evolution of a cumulus cloud, the flow

of a river, or the formation of breakers along an ocean beach. All of

these flows have in common a very irregular or random nature. Now, it

is possible to formulate a set of equations which in general describe

the motion of any small fluid parcel. However, due to the nature of the

flow just described, it is not feasible to apply such equations to all

points in time and space. While introduction of statistical techniques

makes the problem tractable in some cases, their application and the

resultant solutions remain beyond the scope of this module.

It becomes advisable, then, for the ecologist to simplify the

physical description of the model in order to obtain a set of equations

(i.e., a mathematical model) which is more tractable. The usual approach

employs two concepts. The first is to average out the effects of the

random fluctuations in the flow by simple decomposition of all quantities
"s,

into mean values and fluctuations with zero means (see the section

"Steady and Unsteady Flow"). The second involves choosing situations in

which enough terms of the resulting equations are made insignificant to

allow more simple, and hence revealing, solutions (see the four sections

starting with "Uniform and Nonuniform Flow"). Of course, extreme care

must be taken in this reduction to avoid removal of essential characteris-

tics. Although this process requires a great deal of practice, skillful

simplification rewards the researcher with results that are valid under

a variety of conditions.

The equations alluded to previously as describing fluid flow are

based on two conservation laws: those for mass and momentum. The momentum

equations, in their most fundamental form, equate the rate of change of
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momentum of a fluid parcel to the forces acting on the fluid. Conserva-

tion of mass, of course, is based on the principle that matter cannot be

created or destroyed by ordinary means. TThe simple applicaiion of the

concept of conservation of mass (which leads to the continuity equation)

yields both a general descriptive understanding of a particular flow and

some useful applications in hydrology and limnology. Consequently, the

latter part of this module focuses exclusively on continuity and its

applications. A simple one-dimensional description is followed by

derivation in three-dimensional space and a discussion of the continuity

equation in other coordinate systems. A more complete discussion of the

entire set of equations for fluid motion is deferred for the present

time.

FLOW DESCRIPTIONS

Imagine yourself in a small stream with a relatively smooth streambed

and irregular bank with large stones and eddy pools. This stream is in

some places both broad and uniform in width; in others, a narrowing

restriction occurs between two hard rocks. You are now faced with the

problem of classifying and understanding flow patterns over a long reach

of the stream.

For example, you may be interested in examining the possible physical

flow effects on a community of insect larvae such as stoneflies or mayflies

or on a community of attached algae. Or you may be interested in the

influence of flow on where fish lay their eggs or even how the flow may

determine the survival of the eggs. As you read through the flow descrip-

tions think of these examples or others with which you are familiar and

try to relate them to the concept being explored.

8
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Laminar and Turbulent Flow

Fluid flows of interest in both biological and engineering applica-

tions are generally described as turbulent. For our purposes, "turbulent

motion may be visualized as a system of eddies (vortices) of varying

scale (size) and intensity (rotational velocity) superimposed upon the

mean flow," (Eagleson 1970). These macroscopic fluid parcels move about

at random, transporting their cargoes of heat, mass, and momentum. This

randomness complicates mathematical solution of the flow problem,

It enhances, however, the transport properties of the fluid as compared

to the other flow regime of interest: laminar flow. Laminar flow can be

distinguished by its dependence upon molecular transport processes, or

conduction, for transport phenomena. Thus, on a macroscopic level,

laminar flow appears very predictable and orderly. The accompanying

diagram illustrates the contrast. If one were to place a series of

markers equidistant along a line perpendicular to the mean flow and trace

their paths, one would record trajectories similar to those illustrated

for the two types of flow.

Streamlines

Laminar Turbulent

The lines indicate the paths of particles.
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Let us return to our stream of the previous section. In the center,

the water appears to flow along in a relatively orderly or streamlined

manner. Near the rocky edges, irregularities in the form of riffles and

eddying motion are evident. While one's first inclination might be to

label the flow in these areas as laminar and turbulent, respectively,

both flows are probably turbulent (see the next section). In actual

fact, the difference in these flows is due to differences in the intensity

and scale of the turbulence mentioned earlier. In the center of the

stream, while the scale of the turbulence may be large compared to

molecular dimensions, it can still be too small to be observed by the

unaided eye. As a practical matter, time averaged quantities of interest

such as velocity and temperature are used (see the section "Steady and

Unsteady Flow"), which allow the more straightforward analysis applicable

to laminar flow to be applied. Care must be exercised in using this

approach, however, when the organisms involved are sensitive not only to

the mean quantities, but also to their instantaneous values (e.g., very

small algae will be affected by the smallest eddies).

Reynolds Number

Laminar flow can become turbulent, and vice versa, as the conditions

of the flow change. The onset of this transition depends on a combination

of many factors, including the viscosity of the fluid, velocity of flow,

channel configuration and roughness, and channel size. The Reynolds

number, Re, which includes the effects of viscosity, velocity, dimension

and density, is commonly used to determine whether a fluid flow can be

considered laminar or must be treated as turbulent.

0



In 1883 Osborne Reynolds determined that, in order for two geometri-

cally similar flows to be dynamically imilar, a certain dimensionless

number must be the same in both cases. This number is given by the

expression:

vkp (1)= Re

where v is velocity, k is a linear dimension, p is mass density and p is the

viscosity. Re is commonly called the Reynolds number and is the ratio

of the momentum to the frictional forces of the flow. To determine the

importance of this number for describing flow, Reynolds conducted a

series of experiments on the flow of water through glass tubes. As

shown in the following figure, a glass tube was mounted with the bell-

mouthed end in a tank and the other end outside with a valve to control

the flow. A dye jet was arranged near the smooth bell-mouthed entrance

so that a fine stream of dye could be injected. The average velocity,

v, and the diameter, D, were used to determine the Reynolds number,

Re = vDp/p. For low velocity flows the dye stream moved in a straight

line, indicating that the flow was laminar. As the velocity increased,

a point was reached at which the dye stream became wavy and then diffused

throughout the tube. The flow had become turbulent. By careful manipula-

tion, Reynolds was able to obtain a value of Re = 12,000 before turbulence

occurred. However, this number has significance only for the specific

flow geometry under consideration. In general the roughness of the

fluid boundaries (e.g., rocks in the stream channel) will influence the

onset of turbulence, as will the flow geometry. For a wide stream,

turbulent flow occurs for Re > 500 where the mean velocity and stream
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depth are used for v and 2. (Eagleson 1970). For standard temperature

and pressure, this turbulence criterion becomes vk > 6 x 10
-4

m
2
sec

-1
.

Thus, except for extremely shallow streams and/or low velocities, turbu-

lent flow is the rule.

The nature of the flow is characterized by the value of its Reynolds

number. The Reynolds number may be considered as the ratio of turbulent

tendencies to stabilizing tendencies or, as stated commonly in physics

texts, inertial forces (producing changes in velocity) to viscous forces

(tending to oppose velocity Changes). Thus, for large values of Re the

inertial forces dominate and the flow is turbulent; for small values of

Re the stabilizing or viscous forces dominate and the flow is laminar.

Reynolds' Apparatus

Steady and Unsteady Flow

Before we get into a discussion of steady and unsteady flow, we

need to realize that the conditions at a point in the flow are functions

of many variables. For example, the density may be a function of the



8

temperature, time and position, where density is the dependent variable

and temperature, time and position are the independent variables. For

our discussion, velocity will be the important dependent variable and

time and position the most important independent variables.

In the stream, the amount of water flowing throu a section of the

stream may vary with time depending on conditions upstream such as

rainfall and snowmelt, or it may remain constant with time. This time

dependence is what distinguishes steady and unsteady flow. For steady

flow the conditions at any point in the flow remain constant over time.

Thus,

Dv
0.

Dt

Likewise, if the velocity is a function of time and the amount of water

flowing through that section of the stream is variable then the flow is

unsteady. Thus,

Since in turbulent flow small fluctuations always occur at any point, it

would seem that turbulent flow would always be unsteady. This is not

strictly true, however. If the velocity pattern is as illustrated

below, then we cansay that the mean velocity is steady. Where the term

v =
1 f v dt

T T
0
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called the turbulent mean velocity, does not change with time, we define

the turbulent flow as steady. The time T is the turbulent time scale of

interest (see e.g., Tennekes and Lumley 1972, Simpson 1979).

velocity velocity

Steady Unst:eady

As mentioned previously, sometimes the equations describing a

particular flow situation can be very complicated. Derivatives in time

as well as in space occur commonly in such situations. If we can describe

the flow as being "steady," the time derivatives are not included in the

equations and the solutions thus found are time invariant. These are

referred to as steady state solutions. These steady state solutions can

usually be found more easily. At the minimum, the independence on time

removes one more complication in finding a solution.

Uniform and Nonuniform Flow

For steady flow the velocity at a point is constant with time. For

uniform flow, we have a similar criterion; in this case, the velocity is

the same in some direction at a given instant. Thus
2
E.= 0, where s is
Ds

a directional coordinate. This condition is satisfied in the case of a

1
16.. 4
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stream if it has identical cross sections throughout the region of

interest. If, however, the cross sections vary, then the velocity would

av
be a function of 's and Ts- # 0 and the flow would be classified as nonuni-

form. This will become much clearer as the concept of continuity is

mastered in subsequent sections. For example, flow of a stream through

a long uniform section is uniform. Similarly, water flowing through a

narrowing section or a curved section of the stream is nonuniform.

-->
up.

Uniform Nonuniform

Compressible and Incompressible Flow

The density of the fluid is an important characteristic which

enters into many flow equations. In considering the flow of gases

especially, the density of the gas can change in the flow considered and

cannot always be treated as a constant in the solution of the problem.

The density of a gas also changes readily with temperature and pressure.

Liquids slach as water are generally considered incompressible. The

density does change with temperature and pressure, but the changes are

small and thus treating the liquid density as constant is acceptable.
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Ideal Fluid Flow

At one time or other we have all place' our hand in a flowing

stream, and noticed a force exerted in the direction of flow. This

force is known as drag, and it is due to the action of frictionally

induced stress in the fluid layers near the object (see Vennard and

Street 1975, Chapter 13, for further discussion of drag). As pointed

out in an earlier module of this series, the frictional stress is due to

the fluid viscosity, which is in turn caused by cohesive forces between

molecules. It turns out, however, that these frictional forces are

significant only in the vicinity of the object. If we consider large

expanses of fluid, such as a large river or the center section of a

stream away from the frictional effects of streambed or hanks, we can

safely neglect the frictional effects for this region of flow. In

effect, then, we are saying that the fluid is devoid of viscosity in

these areas, or inviscid. Such a fluid is termed an ideal fluid.

The concept of ideal fluid flow has important applications. Division

of the flow into two regions is possible. For example, away from the

edges of flow, or away from flow obstructions such as bridge piers or

pilings, it is a good assumption in many cases to treat open channel

flow of water as ideal flow. This greatly simplifies the relevant

equations while preserving an adequate level of accuracy. More complica-

ted analysis is required in the other flow region, termed the boundary

layer, where frictional effects are important. Usually, however, this

second region is small compared to the region of ideal flow.
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Rotational and Irrotational Flow

Up to this point, we have been able to describe the general flow

characteristics of the various sections of the stream. The concepts of

rotational and irrotational flow allow a further step toward mathematical

simplification when dealing with ideal fluid flow. If an ideal fluid

flow is also i:rotational then it is defined as potential flow. Although

rotation implies a circular motion, motion along a curved path is not

necessarily rotational. For example, the common whirlpool or tornado is

irrotational. Strictly speaking, under the assumptions of irrotationality

as applied to flow situations, this concept would be best understood by

considering a small wheel placed in the stream. If the wheel rotates,

then the flow is rotational, if not the flow is irrotational, no matter

whether the stream follows curved or straight courses. This effect can

be convincingly demonstrated with the "drainhole vortex" which frequently

occurs when a tank is drained through an orifice in the bottom. This

flow closely approximates an irrotational vortex.

u-' ti

e

f ow

Y
x

Rotational

av u

ax
= 0 but

a
0

au

Irrotational

au av
ay ax
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Mathematically, rotation is defined as:

1 rDv @ul
w - -2- L.@x @37.1 5

where u and v are the velocities in the x and y directions, respectively.

Therefore, if w X 0 the flow is rotational and if w = 0 or, likewise,

Dv Du
= , then the flow is irrotational.

ax ay

Rotation commonly arises through the effects of viscosity. Since

ideal fluids are assumed to have zero viscosity, they can be considered

irrotational (except perhaps for isolated points). As mentioned pre-

viously, no real fluid has zern viscosity and thus potential flow nev.-!r

truly exists; however, in many situations such as the large expanse of

fluid in the center of a stream, frictional effects are so unimportant

that for description of flow in ecosystems, potential flow can be assumed.

Analysis of flow situations by assuming potential flow conditions can be

a very powerful tool because of the simplified equations of motion.

Commonly, the potential flow problem is solved for the "outer" layer of

flow. This solution gives approximate values of velocity and pressure

on the edge of the boundary layer, allowing solution for the "inner"

layer where viscous effects are important. Thus, potential flow theory

is a much more powerful tool than might be first assumed.

This point marks the conclusion of the first part of this module,

in which the basic flow classifications and definitions of elementary

fluid dynamics were discussed qualitatively. Based on this discussion

18
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the reader should be able to consider a wide variety of naturally occur-

ring flows and be able to classify them, at least in a general sense.

With this background, we are now ready to delve into spec:Ific cases of

interest. As indicated earlier, the remainder of this module will be

concerned with conservation of mass in the form of the continuity equa-

tion. Treatment of the momentum equations, also known as the equations

of motion, is deferred for the present time.

CONTINUITY

Not only are we interested in being able to describe the types of

flows that we must deal with, but usually we are interested in the

velocity and discharge (amount of water flowing through a section of a

stream in a given time) of particular streams. These characteristics

may find application in comparison of streams and stream classification

(see the section "Stream Order and Stream Classification"). They are

also important in terms of flood control, control of sedimentation and

gauging of available water for downstream use (see p. 22). One gross method of

determining discharge and velocity for a section of a stream is by using

the concept of continuity. For other methods, see, e.g., Vennard and

Street (1975).

One-Dimensional 0-D) Incompressible, Steady Flow

The concept of continuity can be developed from the general principle

of conservation of mass. We shall consider a stream section as illustra-

ted below,

19
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O

,1

and require that the flow be steady, so that there are no variations in

water surface level. Then, mass conservation requires simply that the

mass (m) within a given section of flow remain constant with time, i.e.,

la
= 0. Therefore, the amount of fluid entering the section per unit

dt

time must equal the amount leaving in the same unit of time. Stated

simply:

Mass) [Mass)
E7---
Time Time

In Out.

Mass per unit time at any point is equal to the product pvA where p is

the mass density of the fluid, v is the average velocity, and A is the

cross-sectional area at that point. For the section of river shown

'above in steady flow this becomes:

p
1
171A1 = p2v2A2. (2)

For the sake of simplicity, we have assumed a uniform velocity distribu-

tion across the stream section. In practice, variation in stream velocity

with both depth and width is taken into account by empirically determining
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average velc7:ity for many sections of the stream and then adding the

results. If the fluid is incompressible, then pl = p2 and (2) reduces

to:

vl Al = v2 A2 (3)

This is the very simple one-dimensional form of the continuity equation.

This simple expression for the 1-D continuity equation can be

extended to represent cases of more than one input or output to a section

of a river. For example, the continuity equation at the confluence of

two channels can be represented

Q
1
+ Q

2
= Q

3

simply by:

for steady-incompressible flow. From this expressior a knowledge of any

two of the variables permits a solution for the third.

O
I

The General Continuity Equation

In both of the examples given above the flow has been assumed to be

1-D, incompressible and steady. Not all flows are accurately represented

by this rather simple case. For example, we may decide that the flow is
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unsteady or that two or three dimensions are really needed to describe

the flow accurately. Thus, we must really look for more general forms

of the continuity equation which can apply to these more complex cases.

Consider the mass flux through a small, constant volume element of

the stream. The volume may be represented as a cube of sides dx, dy,

dz. p is the density at any position and time, and u is the velocity

vector with components u, v, w in the x, y, z directions, respectively.

The total mass in the volume dxdydz is pdxdydz. Hence, the rate of

. ,
change of total mass with time is -5-7t )dxdydz). Applying the results of

the previous section, the total flow through the area dydz at x = 0 is

pudydz. Since we can make our volume element arbitrarily small, we can

assume that the flow rate changes linearly with distance. Hence the

change in flow from x = 0 to x = dx is equal to the product of the

change in flow as a function of x times the distance dx, which can be

written:

(Ipu) dx.
3x

22
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The total flow through the area dydz at x = dx is equal to the flow

through the area dydz at x = 0 plus the change in the flow between x = 0

and x = dx, or

ra(pu)
L dx + pu] dydz. (5)

The difference between the flows through these two faces represents the

net accumulation of mass in the volume due to flow in the x direction,

and is written (subtracting 4 from 5):

pu)(

Flow in - Flow out =
aa

dxdydz.
x

If we now repeat this process for the y and z directions, and then

equate the rate of change of total mass with the net accumulation, we

have:

@

at
(pdxdydz) = [ a(p

ay az

u) a(pv) a(pw)
]dxdydz.

ax

Dividing through by dxdydz, we get the general equation of continuity

for compressible or incompressible fluids:

ap a(pu) a(pv) a(pw)
V (Pu),

at ax ay az
(6)

where we have written the right-hand side in conventional vector notation

as the divergence of the vector quantity pu. For the case of incompres-

siblesible flow, we have = 0, so that we get the very useful expression:

V u = 0.

23



19

In other words, the net volume efflux at a point must be zero for incom-

pressible flow (assuming no sources or sinks). Note that the use of the

divergence symbol emphasizes that the continuity relationship is a

general expression holding for arbitrary coordinate systems.

Coordinate Systems

Before trying to solve a complex mathematical description of a

particular flow, it is wise to consider which coordinate system is most

appropriate for the problem. Most people are familiar with the Cartesian

coordinate system used above to develop the continuity relationship.

Other coordinate systems do exist, however. For example, the polar

coordinate system may reduce the complexity of a problem which has

circular symmetries, or circular boundaries. Likewise, spherical and

elliptical coordinate systems are appropriate when problems contain

spherical or elliptical symmetries, respectively. Examine the examples

of stream cross sections below:

A. B. C.

Although we may be dealing with the same general mathematical problem,

it turns out that the problem solution can be considerably simplified in

many cases by choosing a coordinate system whose symmetries match those

of the particular problem at hand. Polar, elliptical, and Cartesian

coordinate systems should probably be chosen for A, B, and C, respectively.
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Most of the general equations for motion and continuity are therefore

given in vector notation to suggest that we consider the appropriate

coordinate systeM for the problem. Expansions of the vector symbols for

coordinate systems and examples of coordinate systems may be found in

many fluid mechanics texts as well as general mathematical or engineering

reference books.

Average Velocity

Throughout the previous development of the continuity equation, we

have referred to the average velocity. In a real fluid the velocity

will vary across the cross section because of the action of viscosity.

For example, the fluid at the boundary has zero velocity due to a "no-

slip" criterion, so that in the vertical direction the velocity profile

is not represented by a straight line equal to the average velocity.

Instead the velocity profile can be represented by a parabola (see the

diagram in the section "Applications to Hydrology"). The fact that the

velocity varies is really important to the organisms living in aquatic

situations. Small animals living in the boundary layer can avoid the

:-trong velocities and the strong forces associated with them. Others

living in the main flow must learn to deal with them. Therefore, the

average velocity may be used to compare different streams or rivers but

the real velocity that an organism encounters may be quite different.

STREAM ORDER AND STREAM CLASSIFICATION

In the first decades of this century, classification of lakes was

introduced as a means by which different lakes of similar types could be

compared. Until recently, no generally acceptable means of classifying

67.4tip)p p
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running water was available. Former classification schemes were based

on productivity, chemical content, indicator species, and substrate.

Recently a method developed by geologists involving stream order has

attained widespread use and acceptance. Termed drainage analysis, this

technique is based on a system of classification in which tiny, fingertip

elements of a stream system are called first order units, and higher

orders are created downstream whenever streams of equal order join, as

shown below. The diagram is from Abell (1961).

Note that low order streams do not affect the classification of

higher orders upon entry. Photogrammetric maps on a scale of 1:30000 or

less can be used almost directly for the drainage analysis. In order to

eliminate strictly ephemeral streams, the biologist must add the concept

of "biological significance." This criterion could be based on consist-

ency of species occurrence. This is impossible to accomplish from map-

based drainage analysis and must rely instead on extensive and repeated

field work.

Stream order has been found to be related empirically to discharge,

stream length and other characteristics of the stream. These relationships
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are not exact and care should be taken to avoid obvious discrepancies

such as sections that are broader or deeper than predicted from stream

order. On the whole, streams do fit well into the classification scheme.

As mentioned previously, the discharge can be related to mean velocity

and thus the discussion of that section is relevant. Also, velocity

influences the type and size of subtrate. Different types of substrate

influence the types of organisms that can live there. Likewise, stream

length is a rough indication of the amount of habitat available for

colonization. Therefore, a stream order can be related to the types and

numbers of organisms in a stream section (Harrel 1967). Although this

discussion is rather crude, the concept of stream classification and

comparison is based on arguments such as these. It should be pointed

out that not all limnologists agree that classification of this type is

useful or corr.ect or even that streams can or should be classified. For

further information, see Abell (1961), Illies and Botosaneanu (1963),

and Kuehne (1962).

APPLICATIONS TO HYDROLOGY

Hydrology is one area in which the continuity relationship has

direct application. Here we are interested in being able to predict

discharges from streams so as to determine the amounts of water available

for use or to predict floods or droughts.

As we can see from the previous discussion, in order to measure the

discharge of a river or a stream, we need to be able to measure the

cross-sectional area and the average velocity. The cross-sectional area

can easily be measured by sounding with a line and weight or by rods.

The cross-sectional area is dependent on the contour of the bed. The

2 7



23

rougher the bed, the more measurements that have to be made. Care

must be taken to ensure that the line and rod are vertical so that errors

will be minimized (Hoyt 1907). The velocity may be measured by observing

the time of passage of a float over a measured course, or by noting the

revolutions of the wheel of a current mete:: or by measuring the slope of

the stream and using empirical slope formulas. Discharge measurements

are usually classified in accordance with the method used to determine

the velocity (Hoyt 1907). In determining the discharge, we are not

interested in just any velocity in the cross section but we wish to know

the mean velocity.

The velocity of flowing water depends principally on (1) the slope

of the stream, (2) roughness of the streambed and (3) the hydraulic radius

(Eagleson 1970, Hoyt 1907, Johnstone and Cross 1949, Kazman 1965, Mead 1950,

Meyer 1928). The slope of the stream (S) in turn depends on the slope of

the streambed and on other channel conditions. The hydraulic radius (R) is

the area of the cross section divided by the wetted perimeter. The rough-

ness of the streambed (n) varies from stream to stream. Values may be

found in U.S. Geological Survey material. The mean velocity at a cross

section could be determined from the vertical velocity curve. However,

this entails performing many measurements. It has been observed that on

many streams under various conditions of depth, velocity and roughness of

the streambed, the vertical velocity curves are approximately parabolic,

as shown below.

Per cent
50

of depth

100
Velocity

ti
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The maximum velocity occurs at a point below the surface with the

velocity decreasing as it approaches the surface or the streambed. The

maximum usually occurs at about one-third of the depth and the mean is

very close to .6 of the depth (Hoyt 1907, Johnstone and Cross 1949,

Mead 1950). If the stream is very deep, both of these points may lie at

a greater depth and if the stream is shallow and has a rough bed, both

of these points may be totally erroneous, but the above-mentioned measure-

ments hold approximately for a wide variety of streams.

Thus, one may simply proceed to measure the mean velocity by using

the .6 depth measurement. The error is generally small. If, however,

F eater accuracy is desired, three points should be measured. Measure-

ments at .2, .6 and .8 can be combined to obtain an even better estimate

of the mean velocity in the following manner:

v
.2

+ v
.8

+ 2v
.6

4
V
m

It is common practice to compute partial discharges from partial cross

sections and to combine these to obtain the total discharge (Hoyt 1907).

This method allows for a more accurate calculation of the discharge by not

assuming that a single velocity measurement can be applied to the whole

cross section of the channel.

The float method for measurement is performed by computing the

velocity of the flow from measurement of the passage time for a given length

of stream (Hoyt 1S07). If the conditions of the channel change during the

length of the stream used, this can introduce excessive error into the
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measurement. Also, the surface velocity is not a very good estimate of

the mean velocity even when multiplied by a coefficient that will reduce

it to approximately the correct value.

Slope measurements combine the effects of roughness and the hydraulic

radius in computation of the velocity. One must determine: 1) the mean

area of cross section; 2) slope of the surface of the stream; and 3)

data on the roughness of the bed from which to determine the value of

"n". The velocity can then be determined from any one of a variety of

"slope" formulas such as the one by Kutter where S is the slope, n is

the roughness and R is the hydraulic radius (Hoyt 1907).

v -
m

1.811
+ 41.6 +

00281
n S

)1 + 141.6 + 00281 n
RS

The slope method can be used for measuring flood discharge but it is

most useful in designing channels to carry a certain discharge at a

given velocity (Mead 1950).

Thus, the simple concept of continuity has application in the field

of hydrology for determining the discharge of rivers and streams. The

applications of the continuity equation may involve measurement of the

discharge and cross-sectional area. From this data the average velocity

can be determined.

CONCLUSION

Throughout this module we have discussed concepts that are basic to

fluid flow and streams. Many of these concepts, especially those dealing
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with flow classification, will gain greater significance in later modules.

However, the basic continuity relationship is readily applicable to

hydrology and can form a basis for understanding the relationships of

aquatic organisms to running water.
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PROBLEMS

1. You are studying a community of organisms in a stream. In order to

be able to understand more exactly the physical and chemical condi-

tions affecting these organisms you decide to formulate a mathematical

model of the streamflow. What descriptive terms would you like to

be able to use to make the mathematical formulation more tractable,

i.e., laminar versus turbulent, etc.? Are these generally realistic?

2. If the flow were considered to be unsteady, how might this affect

the composition and distribution of the organisms? What special

problems might arise? Would there be similar problems in nonuniform

flow? Consider these terms individually.

3. You are out in the field and have decided to study a network of

streams. The streams are fairly uniform and so you decide that the

average velocity of the sections of the streams may be a reasonable

first method for comparing the physical environment of the stream

life. How would you go about finding the average velocity of each

section? What other method might be used for comparing the streams?

In H.B.N. Hynes book, The Ecology of Running Water,* there is a

discussion on methods for measuring the discharge of a stream

section. One method employed in the field is to apply the following

formula:

Q wdak
t

*Hynes, H.B.N. 1970. The ecology of running water. Univ. Toronto
Press, Ontario, Canada. 555 pp.
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where 0 = discharge, w = width, d = mean depth, and R. = distance

over which a float travels in time t. The term a is a correction

coefficient that varies from .8 to .9 depending on the nature of

the streambed. Quite frequently an orange is used as a float,

because it is conspicuous and floats almost entirely submerged.

How can this method be related to common hydrological methods of

measuring discharge? How might a value of "a" be predicted? Why

the dependence of "a" on the nature of the streambed?

5. The average velocity measurements calculated from discharge do not

give us a very good idea of what the actual velocity is that an

organism experiences. A small, simple apparatus was designed by

Gessner. Although crude it can give reasonable results. The

apparatus consists of a conal end piece with a small opening (small

enough to cover by a finger) that is directed into the flow.

Inside is a collapsed bag protected by an open-ended cylinder as

pictured below:

How might you use this apparatus to measure the velocity? Include

a description of the physical use and calculation formulas.
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6. The previous problems have explored methods for computing the

discharge and velocity of a section of a stream. If you are studying

a network of streams, how might you check your calculations? If

there are discrepancies does this necessarily mean that your measure-

ments are wrong? Where might errors come from?

7. The following measurements were taken from a small section of

streams. Compute the missing information.

Average
Width depth Cross-sectional v

average(ft) (ft) area (ft3) Q.

2 1 2 1.5 ft/sec

3 1 3 5 ft3/sec

What assumptions must you make to perform these calculations?

8. In the hydrology section, we discussed the calculation of discharge for a larg

river by adding up partial discharges. Use that method to compute the total

discharge for the river cross section given below.

C- 0
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Width = 10 feet for each section

Velocity measurements:

Section 1: v
avg

= 1 ft/sec

Section 2: v = 1.1 ft/sec
avg

Section 3: v.2 =

Section 4: v.2 =

Section 5: v
.2

=

Section 6: v.2 =

Section 7: =

1 v
.8

= 1 v
.6

= 1.3

1 v
.8

= 1 v
.6

= 1.4

1 v
.8

= 1 v
.6

= 1.6

1.1 v
8

= 1 v
.6

= 1.5

1 v
.8

= 1 v
.6

= 1.2

Section 8: v
avg

= 1.1

Section 9: v
avg = 1
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9. A stream network is given below. Determine the order of each of

the streams.
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PROBLEM SOLUTIONS

1. Generally speaking, we would like to be able to deal with a steady

state problem, thus eliminating time derivatives from our model.

Steady flow also allows one to deal with time averaged mean quanti-

ties, allowing the more straightforward analysis developed for

laminar flow to be. applied. Steady state conditions are realizable

on most streams over time spans short with respect to a year,

assuming no events such as a recent rainfall have temporarily

caused unsteady flow. The 1-year limit rules out annual streamflow

variations due to seasonal rainfall and/or snowmelt.

Uniform flow is approximated well in many streams where stream

width and depth remain relatively constant. As might be expected,

further simplification to the governing equations for our model

obtains from this assumption.

If in our analysis we are interested in the flow away from the

streambed or obstructions, the assumption of ideal fluid flow

simplifies the relevant equations, as well as making available a

large body of already solved problems.

In passing, it should be recognized that viewing the fluid as

incompressible, generally a good assumption for water, is another

standard simplifying assumption.

2. Unsteady flow implies that the volume of water flowing through the

stream changes with time. This means that the banks of the stream

41)
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may change through erosion and deposition of material. As a conse-

quence, organisms that live on the bank of the stream probably must

be ephemeral or be able to withstand drought or flood conditions.

Also, organisms in the middle of the stream may not set up permanent

communities because the streambed may be scoured during floods.

More minor changes can cause changes in velocity patterns that

would destroy organisms attached to rocks. This is why ephemeral

streams have such sparse communities associated with them. Nonuniform

flow, however, would not imply impermanence of existing conditions

so that organisms could be expected to establish themselves in

areas suitable to them. Because the velocity patterns change along

the stream, however, one might expect more diversity of organisms

than in a uniform stream.

3. In this case any of the methods in the section "Applications to

Hydrology" could be applied to measure the velocity. In a small

stream it would probably be more realistic to approximate the

cross-sectional area and measure the discharge by placing a weir in

the stream. The velocity could then be determined from the measure-

ments via the continuity relationship. The stream could also be

analyzed using stream order analysis.

4. Commonly discharge is defined as

Q = Av

wd = A, a t = v
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Therefore the two methods are comparable. "a" could probably be predicted

from measurements of the roughness of the streambed as well as from an

idea of the relationship between the surface velocity and the mean

velocity. Exact determination of "a" is difficult. The value of "a" is

dependent on the nature of the streambed because the streambed determines,

in part, the form of the velocity curve. A rough or smooth streambed

could shift the position of the mean velocity as well as its value.

5. This apparatus can be used by placing one's finger over the opening

and placing the apparatus in the vicinity of which you wish to

determine the velocity. The finger is removed for a certain length

of time and the amount of water collected in the bag per unit time

is measured. With a knowledge of the cross-sectional area of the

opening, the velocity1can be determined by applying the continuity

relationship

v = amount of water x

time interval
1

cross-sectional area

6. If one was studying a network of streams, consistence in the measure-

ments can be checked by using the continuity relationship. For

example, if there were two streams joining to form a third then

Q
1

+ Q
2

= Q3. If this continuity relation is not satisfied, the

error is probably in the measurements, although not necessarily so.

For example, water may be lost or gained through deep seepage or

underground flow. While difficult, if not impossible, to measure,

generally such effects are small. A more probable cause of the

discrepancy would be due simply to the uncertainty of the measurements
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in a statistical sense. To allow for this, one should take several

measurements of each point to establish some sort of confidence in the

easurements in a statistical sense.

7. Width Average Cross-sectional v

(ft) depth (ft) ft2

a 1 1/2 1/2 4 2.0

2 2 1 2 1.5 3.0

3 3 1 3 1.67 5

You must assume that there are no other inflows or outflows.

8. Section 1: 1 ft/sec x 1 ft x 10 ft = 10 ft3/sec

Section 2: 1.1 ft/sec x 10 ft x 3 ft = 33 ft-/sec

Section 3: v
avg

1 + 1 +
4

2(1.3)
= 1.15 ft/sec

Section 4:

Section 5:

1.15 ft/sec x 5 ft x 10

1.1 + 1 + 2(1.4)
1.20

ft = 57.5 ft3/sec

= 66.0

4
=

1.225 x 10 ft x 5.5 ft

1.1 + 1 + 2(1.6)
4

= 1.30

1.325 x 10 ft x 5 ft = 65.0

Section 6:
1.1 + 1 + 2(1.5)

= 1.275
4

1.275 x 10 ft x 5 ft = 63.75

Section 7:
1 + 1 +42(1.2)

= 1.1

1.1 x 10 ft x 4 ft = 44

Section 8: 1.1 x 10 ft x 2.5 ft = 27.5

Section 9: 1 x 10 x 1 = 10 ft3/sec.

Q
Total = 10 + 33 + 57.5 + 66.0 + 65.0 + 63.75 + 44 + 27.5 + 10

= 376.75 ft3/sec

41
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APPENDIX. Symbols, Units and Dimensions

Symbol,.,41.r Quantity Unit Dimension

A area
m2

L2

a correction coefficient dimensionless

D diameter m L

d mean depth m L

t linear dimension m L
n streambed roughness m L

Q discharge m3 s-I L3T-1

R hydraulic radius m L
Re Reynolds number dimensionless

S slope of the stream dimensionless

s directional coordinate dimensionless

T turbulent time scale s T

t time s T

v velocity m s
-1

LT-1

vm mean velocity in S
.. 1

LT-1

vT mean velocity ID S
_1

LT-1

u velocity m S
_1

LT
-1

w velocity m S
-1

LT-1

w rotation dimensionless

w width m L

x directional coordinate 1 m L

y directional coordinate 1 m L

z directional coordinate 1 m L

P mass density kg m-3 KL-3

P viscosity kg m-I s-1 ML-1T-1
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